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Nonequilibrium flow of ionized air in a laminar boundary layer has been studied by several investigators
{1-8], who have addressed a number of practical problems [2-5]. Nonequilibrium effects in a boundary layer
manifest themselves particularly strongly in hypersonic flow of rarefied air. In this case the unperturbed flow
possesses sufficient energy for dissociation and ionization, but the reactions proceed slowly, and their rate
does-not ensure a thermodynamically equilibrium composition. A boundary layer computation with nonequi-
librium ionization was performed earlier, for the case of flow over axisymmetric bodies, assuming a low level
of ionization [1~3]. With the latter condition one need not account for ionization in the energy equations, and
also one can use the gasdynamic parameter profiles in the boundary layer from the zero-ionization problem to
solve the nonequilibrium degree of ionization problem [1, 6]. However, in [1] greatly simplifying assumptions
were made concerning the physical processes in the dissociating gas. For example, the authors did not account
for recombination reactions and the mass flow of reacting molecular components, they assumed constant
Schmidt number, and the dimensionless product of density and viscosity to be constant. In addition, they gave
quite an inaccurate description of the processes for formation of atomic nitrogen and for cooling during disso~
ciation. For these reasons it is of interest to obtain a solution to nonequilibrium ionization in the boundary
layer with a more rigorous formulation of the problem.

In this paper we consider the problem of the laminar boundary layer of a multicomponent gas with a
small degree of nonequilibrium ionization on the lateral surface of a body. We use a boundary condition for
ions that is an improvement compared with that in [6, 9], which enables us to consider a small region where
the guasineutral condition is violated near the wall (in contrast with what was done in [1-5]}). The approximate
analytical solution proposed makes it possible to rapidly calculate the maximum concentration of charged
particles in the boundary layer when we have solutions for the neutral components. In applying the formulas
obtained there is no difficulty in estimating the result of using these other models for the ionization processes
in a multicomponent mixture and in explaining the discrepancies associated with the use of different reaction
rate constants assumed by different authors [10-12].

1. Following references [1-6], we shall assume that the ionization is quite small, but enough to make a
contribution to the momentum and energy equations., With this approach one can make full use of the calculated
results of numerous investigators of the hypersonic boundary layer, in part of the distribution of velocity and
temperature, and in the case of a dissociated mixture, of the distribution of neutral component concentrations,
To do this one requires that

nVini & 4,
where Vi is the ionization energy; is the mean gas enthalpy per particle; nj is the ion concentration; and n is
the total concentration. Here we consider that the ionization is not so small as to invalidate the quasineutral
condition of the boundary layer
as <« 1 : (1.1)

(where d is the Debye radius, and § is the displacement thickness). The latter inequality is a condition for
formation of a thin layer of volume elecfric charge at the surface. Outside this layer we have the ambipolar
diffusion region, and because of the quasineutral condition, ne ~ nj, where ng is the electron concentration.

As the gas approaches equilibrium the thickness of the Debye layer decreases, and, as estimate for air
indicate, becomes comparable with the particle mean free path [. In the case

a1 (1.2)
the boundary condition for the equation for conservation of charged particies will be written at the outer edge

of the Langmuir layer, at a distance from the wall on the order of the mean free path, When Eq. (1.2) does not
hold the approximate boundary condition is applied at the outer edge of the Debye layer.
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The wall is assumed to be non-heat-conducting, isothermal and quite cold, so that complete recombina-
tion of ions occurs there.

As a prereduisite of the problem, we introduce the hiypothesis that we may neglect volume recombination
in comparison with surface recombination. Numerical estimates for air indicate, e.g., that the charged parti-
cles are mainly formed in the high temperature layer, where there is insignificant recombination, and they
then diffuse through relatively cold gas at the wall, where the rate of ionization—recombination processes in
the volume is generally small compared with the surface rate.

From the experimental data of [5] and from an estimate it is assumed that the electron temperature is
close to the gas temperature in the main part of the boundary layer.

We assume the existence of an electric field due to charge separation, which makes it necessary in the
problem of flow over a nonconducting wall to take a coefficient, accounting for the induced electric field, as the
effective diffusion coefficient in the equation for balance of a charged component of the mixture; this is the
analogue of the well-known ambipolar diffusion coefficient in the very simple case of single-species ions {131,

Let ionization reactions of the form
X+Y  »XYt-+e {1.3)
or

X4+Y >X++7Y 4o
take place in the dissociation gas, and let them have a mass rate of

wy = (mylmy my )o%cx ¢y K,

with coefficient Kj, depending on temperature. Here cx, ¢y are the mass concentrations of the X and Y com-
ponents, with particular masses my, my; mj is the ion mass; and p is the gas density.

For a homogeneous gas the ionization processes described by Egs. (1.3) apply quite well, and for a disso-
ciating mixture only approximately (due to the more complex ionization reactions). According to [14, 15], for
air at high temperatures the relaxation time for ionization processes is greater than the relaxation time for

_dissociation,

A low level of ionization, associated mainly with the formation of NO" ions [16] occurs in problems with
dissociating and ionized air, and conditions arise where the above assumptions hold*.

In the formulation of the problem adopted here the equations describing ionization are separated into a
subsystem which may be solved after the dissociating boundary layer problem is solved. Here the ionization
problem in the local similarity framework [17] gives linear differential equations, because the ionization rate
is independent of charged particle concentration in the conditions considered.

We shall use the variables ¢ and 5 in Lees' form [17]

Y

E={ (ouroudz, = riu, (2512 | pdy, (1.4)
0 1]

in which the ion conservation equation for the boundary layer under local similarity conditions takes the form

(1.5)

d [N dc? , dcg 0 _
o \\§W>T¢W+wl =0,
where x and y are the coordinates along and normal to the body surface, respectively; r is the distance from
the axis of symmetry to any point in the boundary layer; j=0 for two-dimensional flow and j=1 for axisym-
metric flow; p is the gas viscosity; Sc is the effective Schmidt number, and p is the density.

The dimensionless mass ion concentration, the particle formation rate, and the gas velocity and tempera-
ture, cg, W(-l’, cp!q, T® are associated with the dimensionless quantities as follows:
T
0

0 .
Tm

[ 0 0 20 A
C; = '_gi , w; = plcxeyKy, @q = ——us, 1
In addition,

*The reaction forming the nitric oxide ion predominates in the shock layer up to a flight velocity of 9 km/sec
[16]. Nonequilibrium flow in the boundary layer exists for ¢ £ 1.
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where ¢ is the Damkeller number; and 7i is the characteristic volume reaction time. The subscripts w, m, s
denote parameters at the wall, at the maximum temperature, and at the outer edge of the boundary layer,
respectively.

In the case of Eq. (1.1), if we neglect the influence of quasineutrality being perturbed, the boundary con-
dition at the outer edge of the Debye layer will have a form similar to that assumed in [1-5]
c; =0
(it is assumed that the condition of Eq. (1.2) does not hold here).
The boundary condition in Eq. (1.2)associates the particle fluxes appearing in the gasdynamic equations

with expressions obtained from gas-kinetic examination of transfer through a potential barrier at the outer
edge of the Langmuir layer [6, 8, 18]:

1 8ET \1/2 1.6

_EETJ“*Tpci(W) (1.6

(k is the Boltzmann constant). It is assumed, as was noted above, that there is complete recombination of ions
at the wall, and this is reflected in the numerical coefficient on the right side of Eq. (1.6).

If we transfer to the variable 5 and add the condition at the outer edge of the boundary layer, for p=0 we
obtain the relations
¢ =0, def/dn— ey =0, .7
where

*= m,

28, EkTIu)Hz.
(P—ri) wh i ’

and at p=o
o = ey (1.8)

The linear boundary problem of Eqs. (1.5), (1.7) and (1.8) can be solved by quadratures (the zero sub-
script in the dimensionless quantities will be omitted from now on)

ci(m) = ez, + (o0) Iy(m)/x(s0) — w(n); (1.9)
o) = 4= Y g e ()] — w0, (1.10)
where
1ot
$() = | E | (w,So/EN) dodt; (1.11)
0 0
n
x () =j Edt; (1.12)
0
{1.13)

n
E = (N, Sc/N Sc,) exp [~ V (Sc /vy dt}.
]

The solution of Eq. (1.9) corresponds to the limiting case of w —« in Eq. (1.10).

Thus, the problem of determining the mass ion concentration profile in the boundary layer reduces to
evaluating the quadratures Eqs. (1.11)-(1.13).

We note that the solution of Eqgs. (1.9) and (1.10) is valid for an arbitrary law for variation of temperature
and composition in the boundary layer. Therefore we can determine the ion concentration profile by using
numerical solutions for a dissociating gas with varying Prandtl and Schmidt numbers. For example, the solu-
tions of [2, 3, 7, 8] are known for dissociating air.
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Taking into account the well-known law for pressure variation along a body surface, and knowing the
dependence of viscosity, Schmidt number and the parameter N on temperature and pressure, we can carry out
the quadratures of Eqs. (1.11)-(1.13) and find the ion concentration profile for a fixed value of the coordinate x.
The profiles of velocity qp!q(n) and temperature T(7) here are known from solving the problem with neutral com-
ponents.

We note further that, having solved the problem for a dissociating gas, allowing for interaction between
the boundary layer and the shock wave, as was done for a nonreacting gas on a flat plate in [19], we can also
find the ion concentration profile in the problem when there is interaction and a given law p(x) for the pressure
variation,

2. When the accuracy requirements for the quadrature of Eq. (1.11) are not so high, we can fall back on
Eq. (1.12). Suitable expressions are obtained from the available data on dependence of ionization rate on the
temperature and the shape of the temperature profile in a hypersonic boundary layer. It is known that at high
Mach number, for a cold wall, the temperature profile has a pronounced maximum. Also, the ionization rate is
exponential with temperature. Consequently, the main contribution to formation of charged particles comes
from a narrow region of the boundary layer near the temperature maximum. This allows us to represent the
ionization rate in terms of the & function and to reduce the determination of mass ion concentration profile to
evaluation of the quadrature of Eq. (1.12).

With constant Schmidt number across the boundary layer we obtain simple analytical formulas which
enable us to make rapid approximate computations.* Estimates show that we can replace the exponent by the
6 function, without introducing large errors.

We shall consider that [16}
K; = Tvexp [T:(1 —1/D)], (2.1)

where
KinionZIGXp (_' Ti): Ti=D/Tma. (2.2)

and the constants o, v, D are determined by the specific form of the reaction and the approximation made by
‘various authors (for air see, e.g., [10-12]).

We shall approximate the temperature profile in a hypersonic boundary layer for a cooled wall in the
maximum region and for the coordinates nyy, by the function

T —1 = —on— 1w (2.3)
where w is some constant,

After a series expansion of the exponent in Eq. (2.1), and the use of Eq. (2.3), we can write the ionization
rate in terms of the 6 function in the form

K; = (n/ oT;)*8(n — Mm)- 2.4
By substituting Eq. (2.4) into Eq. (1.11), after the obvious transformations, we obtain
0 N Ny @.5)

oy =1
P00 = L (o0) 1 () — 1 (VI (09) = % ()]s 1> T,

where

P(00) = (/@ T;)*1Sem/N mE(Mm) Hx(20) — x(Nm) 1.
For Sc=const we obtain

E = [@"/g" (0)S¢(NIN,, ) 51,
, 0 .
2m) =0 )Ly (OIFNE, o (n) = | [¢*N*as,
-0

P() = (/'oT)/* Sc 18(c0) — 8(nm) )/ (9" (Nm) N 15
and x is replaced by ¢ in Eq. (2.5). Here the primes denote differentiation with respect o 7.
In conclusion we write expressions for the parameter w and the Damkeller number ¢ for a sharp cone.
From the first expression in Eq. (1.4), with (uG/T)w= const (G is the molecular weight), we obtain

*The condition is not a limit of the problem, but is only regarded as one possible special case simplifying the
final formulas, Eqs. (1.11), (1.12) and (2.5).
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Using Egs. (2.2) and (2.6), after simple transformations we have

m G r 12
% = 28c,, ( 2 ) .

m, 3ap,, U

2om.m
C =t
3km ymo

cchYme _,I:f' T:n—l eXp (_' Ti) (2-7)
$

(m is the mass of the hydrogen atom).

Thus, knowing Se, the profiles of ¢ and N, the parameters nmy, w and %, we can find the distribution of the
dimensionless mass ion concentration in the boundary layer, Egs. (1.9) and (1.10}, and, using Eq. (2.7), the
absolute value for a fixed coordinate x.

3. As an example of the use of the analytical formulas we consider a sharp cone washed by air at con-
stant pressure along the surface. To find the velocity profile we use the conventional temperature distribution
[20]. In this case N is formally replaced by N* — (op)*/(op),, which we find from the value of the relative
temperature T*, and the equation of motion is reduced to the Blasius equation for the function @/(N*)** with
variable n/(N*)¥2. The dimensionless electron concentration and its maximum value for n>»1, cjg<1 are
found from the formulas

ne = 0(00)c;/ TP(c0)0(Nm)s Pem = [P(00)EPG /K T 1 1 [mB(nm)/m;8(o0) 1.

Our estimates show that the effective Schmidt number for dissociating air does not correspond to the
values adopted in [1~4] (the authors did not account for the phenomenon of charge exchange). A better approxi-
mation will be given by 8¢ =0.75, which is used in the calculations here.

Figure 1 shows the dimensionless electron concentration profile in the boundary layer (solid line) for the
case of Eq. (1.2) with px/ug= 107% atm - sec, N*=1, cig <1, and, for comparison, the result obtained by the
finite difference method of [2] (points). Both calculations refer to a cone semivertex angle of 10°, g = 6585
m/sec and Ty, =1000°K. Since, for a given cone semivertex angle and velocity of the incident flow, the tempera-
ture profiles vary only slightly [2, 3] with variation of the binary similarity parameter px/ug [21], in the calcu-
lations we used the temperature distribution near the cone vertex for p=0.247 atm [2]. In the example pro-
vided for comparison we also assumed the dimensionless concentration profile to be independent of the binary
similarity parameter. We note that the behavior of the concentration for 5<0.1 was obtained here hecause of
the improved boundary conditions. The agreement of the profile through the boundary layer with the result of
accurate numerical calculations is fully satisfactory.

By extrapolating the maximum concentrations of the atomic components, obtained in [2] by the approxi-
mate method of [1], for our value of the binary similarity parameter, it may be shown that the condition of Eq.
(1.2) is satisfied for p<0.5 atm.
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Figure 2 shows the results of calculated maximum electron concentration in the boundary layer for the
case of Eq. (1.1) (curve 1). The parameter w, which varies slightly with the binary similarity parameter {2, 3],
was assumed to be equal to the value near the cone apex, and the maximum temperature and concentration of
the atomic components were taken from [2]. Data were used relating to a constant rate for the ionization
reaction N+O— NO* +e, as given in [10]. Figure 2 also shows results obtained using the approximate theory
[1] (curve 2, a) Ty, =4580°K, b) Tm=4700°K), by the finite difference method of [2] (curve 3) and by the method
of integral relations of [3] (curve 4). We note that the results obtained here agree better with the exact numeri-
cal calculations of [2, 3] than with those determined by the approximate method of [1], although these do not
require the use of a computer.
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